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We show how a singular perturbation technique based on the introduction of 
properly scaled variables enables us to derive the asymptotic properties of 
coupled Langevin equations in the limit of weak noise. This technique can be 
applied when the macroscopic steady state is asymptotically or marginally 
stable. In the close vicinity of a cusp bifurcation point, a simple prescription for 
the adiabatic elimination of the fast variable is established. The critical variable 
exhibits amplified non-Gaussian fluctuations on a slow time scale. The proper- 
ties of the fast variable depend on the nonlinearity of the system under 
consideration. Because of its coupling to the critical variable, it may exhibit 
amplified fluctuations of non-Gaussian nature. 

KEY WORDS: Nonlinear stochastic differential equations; Fokker-Planck 
equations; fluctuations; bifurcations; adiabatic elimination. 

1, INTRODUCTION 

Stochastic processes have been applied to a large variety of problems, such 
as chemical systems, Brownian motion, parametric oscillators, population 
dynamics, hydrodynamics, quantum optics, and so on. ( l. 2),4 For a Markov- 
ian process, the basic equations are the Master and the Fokker-Planck 
equations for discrete and continuous processes, respectively. Many studies 
have been devoted to the solution of these equations. (3-8'29) Among other 
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techniques, singular perturbation has been successfully developed to extract 
relevant information from these equations in the case of one variable, both 
for homogeneous (9-1z) and inhomogeneous systems. O3'~4) Some results 
were also derived for a particular two variable model, the so-called Brus- 
selator.(~o,~5-]v) 

In this paper we present a general discussion of the continuous 
stochastic processes for two-variable homogeneous systems, whether or not 
they obey detailed balance. In particular we verify, on the basis of a 
singular perturbation analysis, such procedures as the adiabatic elimination 
introduced by Haken. (2~ Emphasis will be laid on the physical aspects of 
the techniques and results. Details of the analysis are reported elsewhere. (~8) 
The most representative results will be shown in illustrative examples. 

2. GENERAL CONSIDERATIONS 

Consider the set of nonlinear Langevin equations: 

d x .  . .  dt ' =f~(xl, . ,  xn) + E1/2F/, i =  1 , 2 , . . . ,  n (l) 

where the (F/} are Gaussian white noises, defined by 

( Fi( t)Fj( t') ) = Qij~( t - t') (2) 

The equivalent formulation in terms of the Fokker-Planck equation reads 

~),P({xi};t)= ~ - ~ f~+ ~ ~ Q o ~  P({x,};t) (3) 

In this paper we study the asymptotic properties of the stochastic process 
(x l . . . . .  xn) =- (xi) defined by (1), in the limit of weak noise e---> 0. Apart 
from its mathematical interest, such a study is relevant for many physical 
problems. When the variables (xi} represent intensive thermodynamic 
variables, such as the chemical concentrations, temperature, and so on, the 
noise represents the effect of local thermal disturbances and hence it is 
proportional to the inverse-volume size, which is obviously small. In the 
case of Brownian motion, the noise is proportional to the (small) ratio of 
masses of Brownian particle and solvent molecules. In electric circuits, the 
noise comes from parasite effects which one tries to minimize. Although 
small, the noise may induce macroscopic effects when the stability of the 
system is threatened. This happens, for instance, in the vicinity of bifurca- 
tion points. 

When one or several of the (xi} variables obey a dosed subset of 
equations, they can be considered as external noise acting on the remaining 
variables. (28) It should be noted, however, that many phenomena related to 
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external noise (such as noise-induced transitions (19)) cannot occur in the 
weak noise limit analyzed in the present paper. 

Some general results concerning (1) are known. If one sets e = 0, the 
noise terms vanish and (1) reduces to the set of "macroscopic" equations: 

d -  
-dr xi  = f (21 . . . .  ' 2n)' i = 1 . . . . .  n (4) 

Kurtz showed that, as far as an initial value problem is concerned, a small 
noise affects the process only perturbatively: stochastic trajectory ( x i ( t ) )  
and macroscopic trajectory ( 2 i ( t ) )  remain "close" to each other for some 
finite time: 

I x i ( t )  - 2 i ( t ) l . - - O ( c l / 2 ) ,  Vt < T(e) (5) 

almost surely, if initially so. (2~ 
In a more physical context, this result states that a Gaussian probabil- 

ity density centered around the macroscopic state propagates in time. The 
above result holds for any nonlinearity of the system, but it is valid only for 
finite time: it leaves open the problem of the stationary state and the 
approach towards it. 

To illustrate the difficulties that occur in the long time limit, let us 
consider the following example: 

d x 3 --~ x = Ax  - + ~1/2F (6) 

In the absence of the noise (F  = 0), Eq. (6) has a bifurcation point at ~, -- 0 
(see Fig. I): for A < 0 it possesses a unique stationary solution (2 = 0), 
while for A > 0, two additional solutions (2• = ___ ~X-) appear. 

X 

Fig. 1. Typical bifurcation diagram for the cusp transition. 
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Let us start by assuming F to be constant. Then one can write the 
series expansions 

x ( t )  = 2 ( t )  + e ' /2x l ( t )  + ex2(t ) + . . .  (7) 

Clearly, 

Ix ( t )  - 2 ( t ) 1 ~ 0 ( , 1 / 2 ) ,  Vt < T, T < oo (8) 

For ~ < 0, the series (7) and the corresponding result (8) remain valid for 
t ~  0% including the stationary state. For  ?~ = 0, however, the stationary 
state displays another e dependence: 

IXs -- X s [ ~ O ( ' ' / 6 ) ,  "~s = 0 (9) 

The limits e ~ 0 and t ~ oo therefore do not commute. The same problem 
arises for X > 0, i.e., in the region of coexisting macroscopic steady states. 

The problem we raise here is the matching of different macroscopic 
regimes. Of course for the model (6), with constant F, the exact time- 
dependence solution is known. But the problem is much more involved 
when F is time dependent, a fortiori a stochastic function, and remains 
largely unsettled despite recent significant progress. (22-26) 

The example (6) has one particular property which remains true for 
X = 0, even in the limit t ~ m: 

lira Ix(t) - ~(t)] = 0, X < 0 (10) 
,~0 Vt, including t ~ 

This result is part of a more general statement which was formulated for 
systems involving one variable(14): stochastic and macroscopic trajectory 
converge 5 in the limit c - ) 0  for all times, including the stationary state, if 
the macroscopic steady state is unique and globally stable. This includes 
the case of marginal stability which in our example, Eq. (6), occurs for 
h - - 0 .  

In this paper we derive the asymptotic properties of the general process 
described by Eq. (1) in the limit c ~ 0 ,  at or near the stationary state and 
this, independent of whether or not the system obeys detailed balance. The 
transient regime and its corresponding matching problems will not be 
considered, although one situation where Kurtz results (5) can be extended 
to t ~ oo will be discussed. 

To illustrate our method, consider again the model (6) but with F a 
Gaussian white noise, defined by 

( F ( t ) F ( t ' ) )  = Q S ( t -  t') ( t l )  

s The convergence was shown to be in probability, although a stronger taw of convergence is 
expected.(27) 
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Since the problem involves one variable only, the stationary solution can 
easily be found: 

Ps(x)~exp[  ~ (X ~ -  -~'- ) j X4 ] (12) 

In agreement with our general statement, the stochastic values converge (in 
probability) to the macroscopic stationary state ~s = O, when the latter is 
unique and globally stable (h < 0): 

limP~(x) = 8 ( x ) ,  ~ < 0 (13) e--~0 
To evaluate the amplitude of fluctuations in the limit e-->0, the 

perturbative expansion (7) suggests the introduction of a scaled variable: 

u = e - l / 2 x  (14) 

This leads to 

limPs(u) = ( - X  )l/2ex p Xu 2 (15) 
,-~0 - ~ -  Q 

at least when h < 0. For h = 0, P , ( u )  is no longer a normalizable probability 
density in the limit c + 0 (since it vanishes for all u). The marginal stability 
of the macroscopic reference state is responsible for the amplification of the 
fluctuations and another e dependence of the stationary solution is ex- 
pected. Indeed, for 

U = e - l / a X  (16) 

we find 

2(2Q)- ' /4  ( u4 ) 
limP~(u) - exp - h = 0 (17) 
,- ,o r ( 1 / 4 )  2 -0  ' 

When the explicit solution of the Langevin equation is not known, the 
introduction of the probability density for appropriately scaled variables 
can thus be helpful for studying the asymptotic properties of the pro- 

"cess. (13'14) In general, if we set 

u = ca-ix; 0 -<< a < 1 (18) 

three typical situations can be distinguished: 

~does not exist, if a < ac 

limP~(u) = I f (u) ,  if a = a c (19) 
,-~o [8(u), if a > a C 

where f ( u )  represents a nontrivial (i.e., non-delta-function) probability 
density. The value a = ac defines the scaling which is relevant for the study 
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of the fluctuations. Of course it may happen that such a value a c < 1 does 
not exist. In our example, this is the case when X > O. In fact, in this case 
the macroscopic steady state 2, = 0 loses its stability in favor of the two 
new solutions 2_+ = + ~X- that arise. The probability function P,(x)  is a 
two-humped density with a minimum at the unstable solution. For  e--) O, it 
reduces to the sum of two delta functions centered, respectively, at the 
stable macroscopic steady states. (l~ This situation will not be discussed 
in this paper. 

Let us now apply these ideas to two variable systems for which the 
stationary solution is not generally known. Let 

~tx = f ( x ,  y )  + cl/2Fx ~ v  = g(x ,  y )  + el/2Fy (20) 

F x and Fy are Gaussian white noises with correlation functions 

< Fx( t)Fx( t') ) = Qxx6( t - t') 

( F~( t)Fy( t') ) = ( Fy( t)Fx( t') ) = QxyS ( t - t') (21) 

( Fy(t)Fy(t ' ) )  = OyyS(t - t') 

We will suppose that f and g are analytic functions in the neighborhood of 
the macroscopic steady state (xs, Y,) which we take to be unique and 
globally stable (but not necessarily asymptotically stable). Then, the devia- 
tions 6x = x -  2 and 8y = y - y  go to zero, in some sense, in the limit 
e ~ 0 for all times including t ~ ce. Following the arguments developed in 
the case of one-variable problems, we introduce the scaled variables: 

U = r  V = cb- l~y ,  a ,b  < 1 (22) 

where a and b should be chosen such that the corresponding probability 
density P(u ,v;  t) remains normalizable in the limit e ~ 0 .  Moreover, we 
require that its moments/~ . . . .  

,m.~ JJaudvumv~ m,n = 0,1,2, . . . (23) 
- - O O  

remain finite in the limit e ~ 0, if they exist for e ~ 0. In order to avoid the 
trivial result P(u,  v; t) = 8(u)6(v) ,  we finally require that at least one of the 
moments /~m,n be different from zero (m + n >/ 1). Using the above condi- 
tions, it can be proven that the scaling exponents a and b must obey the 
following inequality: 

� 8 9  (24) 

A general proof of this result is given in Ref. 18. We discuss its implications 
in detail later on. 
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The Fokker-Planck equation corresponding to the Langevin equations 
(20) reads 

0 ka=O - - Y)~] 
.1 

[ 0_2__ 2 0 2 
+~ [ a ;  Oxx + 2 0-~y exy+ ~yzO--~-2 QyyJ}P( x' y;t ) 

(25) 
where ffq stands for 

1 0 i + j  ~ = ~,y =Y i! j! OxiOy i F 

A Gaussian initial condition imposes a = b - - 1 / 2 .  Equation (25) then 
reduces, to dominant order in e, to a linear Fokker-Planck equation. In 
accordance with Kurtz's result, this initial Gaussian will propagate in time. 
The dynamics of the fluctuations is determined by the linearized operator 

go, gl0! 

The Gaussian law remains valid for t + oo, if the fluctuations of the scaled 
variables do not diverge in this limit. This depends on the eigenvalues of L, 
which determine the stability properties of the macroscopic stationary 
states. If the real parts of both eigenvalues are strictly negative, the 
fluctuations do not diverge and the distribution remains normalisable for 
t + oo. This leads us to the conclusion that the Gaussian law remains valid 
up to the stationary state when the macroscopic steady state is not only 
globally but also asymptotically stable. When the real part of an eigenvalue 
vanishes, the flucuations of at least one of the scaled variables diverges at 
the stationary state, indicating that the Gaussian scaling cannot be ex- 
tended to t ~ oo. As is clear from the example (6) treated above, we expect 
a qualitative change in the properties of fluctuations. 

It is known from the theory of nonlinear differential equations that the 
linear instability of the steady state indicates the possibility of bifurca- 
tion. (]) Three situations can be distinguished: 

(i) One of the eigenvalues vanishes and the other remains negative. 
From the standpoint of bifurcation theory, the most interesting example of 
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these situations is the case of a cusp bifurcation. It will be considered in 
detail in the next sections. 

(ii) Two complex conjugated eigenvalues have a vanishing real part, 
but nonvanishing imaginary part. This is the case of a Hopf bifurcation. Its 
study is reported in a forthcoming paper. 

(iii) The two eigenvalues vanish together. In this case no general 
conclusion can be drawn and one has to proceed to a nonlinear stability 
analysis. Such cases will not be considered in this paper. 

3. MARGINAL STABILITY: REAL EIGENVALUES 

We consider the case where the matrix L has two negative eigenvalues 
X 1 and X 2, one of them being possibly zero: 

)k 1 <~ )k 2 ~,~ 0 (27) 

For simplicity we will assume that the deterministic variables are at their 
stationary state 6 (2s, 9~,). Note that since the eigenvalues X l and )k 2 a r e  

different, the matrix L can always be diagonalized. We can thus, without 
loss of generality, rewrite (25) in terms of the scaled variables (22) as 

i+j>2 

0 [~kts E ~kl~.k(1-a)+(l-1)(l-b)ukt) l] 
Ov k+l>2 
~.2a- 1 02 •2b- 1 02 

- - +  Qyy 
+ ~ Qxx 0u 2 ~ 0v 2 

+,a+b-lO=.xy~02 }P(u,v;t) (28) 

where, in order to explore the vicinity of the critical point X 2 = 0, we have 
set ~2 = CX' with fixed negative 2~'. Of course for c = 0 the Gaussian 
scaling a = b = 1/2 prevails at the stationary state, as we discussed earlier. 
One then obtains from (28) 

(6u 2) = Qx~ (Sv 2) = QYY (6u 8v) =- Q~Y (29) 
2)tl 2)~2 )kl + ~'2 

On the other hand, sufficiently close to the bifurcation point, i.e., for c 
sufficiently large, a change of behavior of the system is expected (the value 

6The combined relaxation of the deterministic values and fluctuations leads to similar 
equations but with time-dependent coefficient. (29) 
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of c delimitating these two situations can be derived explicitly (18)). Indeed, 
for ~2 ~ 0 we observe the divergence of the (Gaussian) scaled variable v. 
This suggests that at the stationary state the fluctuations of the y variable 
are of lower order than O(el/2), and therefore we should choose a different 
value for b, larger than 1/2. Although (29) predicts that the fluctuations of 
the x variable are not affected, one expects intuitively that the latter 
flucutations may by "contamination" also be amplified. We will return to 
this point in the next section. 

It can be proven that values of a and b satisfying the conditions 
discussed in the last section [Eq. (24)] obey the following inequalities (18)" 

a < b (30) 

In order to investigate the critical properties of the y variable, we derive the 
equation for P(v, t) by integrating (28) over the u variable: 

+ ~2b-1 QYY3v ---~32 .)P(v;t) (31) 

To obtain a closed equation for v, we have to calculate the conditional 
averages 

<uklv> = f P(u Iv; t)ukdu (32) 

where P(ulv;t)= P(u,v;t)/P(v;t) is the conditional probability for u 
given a value of v. Now, from (24) it follows that the inequality j(1 - b) + 
(i - 1)(1 - a) < 0, i + j / >  2 can only hold for i = 0, whereas the inequality 
k(1 - a) + (l - 1)(1 - b) > 0 for k + l/> 2 always holds. Hence, by inspec- 
tion of the orders of magnitude of e in Eq. (28), we conclude that 

Ote(u,t~;t)~ (-- ~-~ [~lU* fojs j ] 

+ --2----~2a-1 Qxx 8u 20---~-2 )e(u[v;t)[1 + o(1)] (33) 

Here fo,j is proportional to the first nonvanishing derivative of f with respect 
to Ys. If such derivative does not exist, then the corresponding term in (33) 
is zero. From (33) one finds, by integration over u; 

O,P(v,t) = o(1) (34) 

At this order of perturbation in e, the v (or y) variable does not evolve in 
time. Hence, by combining (33) and (34) one obtains for the conditional 
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probability P(u Iv; t): 

ote(ull)'~t)= (-- -~Uu I~lU'Jl-:Ojf.j(1-b)-(l-a)t)J ] 
s 1 32 1 + ---f-- Qxx-~u 2 , ? ( u l v ; t ) [ 1  + o(1)] (35) 

This result describes how the fast variable u follows the slow variable v. If 
we are concerned with the evolution of the slow variable v only, it suffices 
to consider the stationary solution to which the distribution will relax on a 
time of the order of O(1): 

(--)klel-2a~l/2[)klel-2a( :~163 (36) 
 Qxx )exp L u+v 

This allows to calculate the conditional averages (32) to dominant order in 
e. Of course higher order correction to (36) have to be considered, if these 
conditional averages vanish. Note finally that it is also possible to calculate 
the conditional averages from the chain of the equations for the moments 
(see Ref. 30). 

Further consideration of the result (36) and the specific values of a and 
b depend strongly on the nonlinearity of the model under consideration. 
Before proceeding with the general discussion, we illustrate some typical 
situations on explicit examples. 

4. SOME EXAMPLES 

In the following examples, we suppose for simplicity of notation that 
the (globally stable) macroscopic steady state is given by xs = Ys = 0 with 
~1 = - 1. We examine different cases, ranging from a strong coupling to a 
complete decoupling of the two variables. 

4.1. Example A 

Suppose we have 
Otx = -x + y2 + E]/2Fx O,y = --xy 3 + ci/2F:, (37) 

The general result (31) becomes in this particular case 

+ ~r OyYov -'---~32 }P(v;t) (38) 

The conditional probability reads to dominant order in ~ for values �89 < a, b 
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< 1 [cf. Eq. (24)]: 

ps(ulv)~exp[ ~,-2,Qxx (u- c2(1-b)-(1-a)v2) 2] (39) 

Let us try values of a and b such that 

2(l - b) - (1 - a) = 0 (40) 

One finds 

(u  iv)  -- v 2 (41) 

In order to obtain a nontrivial result for P(v;t), the noise and the 
systematic term in Eq. (38) have to be of the same order in ~ (if not either 
the systematic term dominates on the noise or vice versa). This implies 

( 1 - a ) + 2 ( 1 - b ) = 2 b -  1 (42) 

which, together with (40), leads to 

a = 5, b = ~ (43) 

These values are consistant with the condition under which (39) was 
derived. Inserting the relations (43) in the expressions (38) and (39), one 
easily verifies that 

limP~(u I v ) =  ~ ( u -  v 2) (44) 
c---)0 

lim P~(v)~exp(  - 1)6 ,~0 \ ~ ) (45) 

l i m P ~ ( u ) ~ e x p / -  lul3 ,--,0 \ 3-~yy ) (46) 

These results can be summarized as follows. 
1. To dominant order in E, the elimination of the fast variable 

amounts to setting x = 9 in the equation for y. The value b = 5 /6  then 
follows from the results for one variable systems. The critical variable thus 
exhibits amplified non-Gaussian fluctuations. It evolves on a slow time 
scale (~" = ~2/3t). 

2. A more surprising result is the non-Gaussian nature of the fluctua- 
tions of the fast variable, This can be explained as follows: on a time scale 
of O(1), the fast variable relaxes to a Gaussian distribution, with the 
amplitude of its fluctuations (6x2)..~0(r centered around the average 
value y2. These are the "intrinsic" fluctuations of x. On the slow time scale, 
the critical variable exhibits amplified fluctuations (&y2).~0(~t/3). The 
average of the "Gaussian" variable follows these slow fluctuations. This 
induces a supplementary contribution to the fluctuations of x of order: 
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(~X2)ind,"~(~y4)~O(e2/3). Hence the induced fluctuations are dominant 
over the intrinsic fluctuations of x. 

The fact that the fluctuations of the fast variable reflect the critical 
properties of the slow variable may be of experimental interest if, for 
instance, the measurement of the critical variable proves to be difficult. The 
measurement of the "fast variable" can then yield the required information 
on the critical behavior of the system. 

From the above discussion, we expect that for other nonlinearities of 
the system, the proper flucutations of the fast variable can be of the same 
order in e as the fluctuations induced through the coupling to the slow 
variable, or even dominant on the latter. We proceed with the discussion of 
such cases. 

4.2. Example B 

Suppose we have 

OtX = -- X + f12 + r  ~tfl = -- Xy + cl/2Fy (47) 

Proceeding in the same way as for example A, we obtain 

[ ~e2b-' Qyy ~ v  2~2 1 O,P(v, t) = - ~v (d-a(u Iv)v) + P(v; t) (48) 

and 

ps(ulv)~exp[ ,l-2aQxx ( u -  ez(l-b)-(~-%2)2] (49) 

Again, we choose values of a and b such that 

2(1 - b) - (1 - a) = 0 (50) 

Inserting the result (u Iv) = v 2 in (48) and identifying the e dependence of 
the systematic and the noise term, we obtain the second equation: 

1 - a = 2 b  - 1 ( 5 1 )  

From (50) and (51) it follows that 

a = l ,  b = (52) 

For these values of a and b, the following results are obtained: 

limP,(ulv)--exp[ - 1 (u-v2)  2] (53) 
e-+0 

limP~(v).~exp( v4 ,--,o ~ 2Qyy ) (54) 

limP,(u),~exp( u2 (55) 
,- ,0 k 2( u 2) ] 
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with 

(8u2) = Qxx(Qxx+4Q~,y) 
2( Qxx + 2Qyy) 

We conclude the following: 
The adiabatic elimination again amounts to setting x = y 2  in the 

equation for y. The fluctuation of the fast variable are enhanced but their 
Gaussian nature is preserved, only the critical variable exhibits non- 
Gaussian fluctuations. 

4.3. Example C 

Suppose we have 

Otx = - x + y4 + e'/2Fx 0 , y =  - xy + e~/2Fy (56) 

If we proceed in the same way as for examples A and B, we arrive at values 
a = 1/3, b = 5/6, which contradict the relation (24) (a > 1/2) from which 
the result (36) was derived. Therefore, the only possible nontrivial result for 
the conditional probability is obtained for 

a = �89 and 4(1 - b ) -  (1 - a) > 0 

hence 

l imP~(u[v)~exp{-  u---~2 ~ o  \ Qxx ) (57) 

Since (u I v ) =  0 to this dominant order in e, we have to calculate the 
correction to the result (57). We consider again the equation for P(u, v; t) 
taking into account that a = 1/2: 

OtP( u,I~; Q = [ - ~-~-ff (-- U + s -- O-~ (E1/2U~) ) 

+ - -  Qxx + e2b-I 1/2 P(u,v;t) ~u 2 Ov 2 QYY + 2cb- OU OV 

(58) 
One verifies that for a choice b > 4/5,  this equation reduces, up to the 
first-order correction in E, to 

OtP(u , ~9; t) ----[- ~ (u + E 4(l-b)- 1/21)4) 

02 ]P(u,v;t)[1 + 0(~)]  (59) + 1 Qxxou___ 5 
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Hence, proceeding in the same way as for the derivation of (35), 

3 t P ( u l v ; t  ) - - - [ -  ~u (u + ,4(l-b)-l/2v4 ) 

02 
+ 1 QxX_~U 2 ] p ( u l v ; , ) [  1 + O(,) ]  (60) 

and the result (36) is found to remain valid up to the first-order correction 
in E for b > 4/5.  Substitution of the resulting value of (u  Iv) in the 
equation for P(v;  t) leads to 

[ ~'2b-1 QYY Or ----~02]P(v;t ) (61) O,P(v; t) = - ~v ('4(1-b)135) "4" 

Hence we find b = 5/6, which obviously satisfies the inequality b > 4/5.  
From the above results we can draw the following conclusion: To domi- 
nant order in e, the fast variable is completely decoupled from the critical 
variable. 

Note that in this example, the coupling of the slow variable to the fast 
variable is through the conditional average ( u l v )  and not through higher 
moments. For this reason, the flucutations of the fast variable do not affect 
the properties of the critical variable. Nevertheless, the adiabatic elimina- 
tion again amounts to the substitution of x = y2 in the equation y. It will be 
proven in the next section that this is indeed a general feature. 

4.4. F:xample D 

So far we have considered examples in which the equation for x 
always contained at least one term of the form y k, k/> 1. Let us now 
consider a case in which such a term does not exist: 

O,x = - x + xky ' + El/2Fx Oty = -- xiy -- y3 + e]/2Fy (62) 

with k >/ 1. 
We know that the global stability of the macroscopic steady state 

implies the convergence of stochastic values to the deterministic values 
even for t ~  oo, i.e., b < 1. Therefore it is clear that 

xkY' ~ o ( 1 )  (63) x 
and is negligible for e ~ 0. Hence, the above problem reduces, to dominant 
order in e, to a problem of "external noise. ''(28) It is clear that the scaling 
value of x will be Gaussian: a = 1/2. This leads to the following equation 
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for P(v;  t): 

~,P(v; t )=[-  O-~(-�9 C2b-1 b2 ]P(v; t) 
+ �9 + - T -  Osy 0v---~ 

(64) 

So far, the situation is similar to that occurring in example C: to dominant 
order in �9 the x variable is decoupled from the y variable. We will now 
prove that the converse is also true, i.e., to dominant order in e, the y 
variable is decoupled from the x variable. Since b < 1, we have 2b - 1 < 1. 
Moreover, the conditional average (uilv) is of the order of O(1) (or 
possibly vanishing). Therefore the systematic term - �9  is always 
negligible compared to the noise contribution. The equation for P(v, t) then 
becomes 

- ~v  "~ ~ ) + T QYY ~v 2 P ( v ;  t) (65) 

and the value b = 3 /4  follows. Note that the assumed global stability of the 
macroscopic steady state implies that the latter is unique. Therefore, the 
existence of a term of the form yk, k i> I, in either the equation for x 
(examples A, B, C) or in the equation for y (present example D) is assured. 
In the last case, we showed that the latter term was dominant over all the 
mixed terms. 

5. GENERAL DISCUSSION 

In the previous examples, we found some common features such as the 
simple prescription for the elimination of the fast variable. The properties 
of the non critical variable were found to be qualitatively different depend- 
ing on the specific nonlinearity of the model. We now present a general 
discussion which allows to classify the various possible cases according to 
the nonlinearity of the system. 

The result (36) is valid to dominant order in �9 for values of 1/2 < a, b 
< 1. If we suppose that there exists a coefficient foj --/= O, three situations can 
be distinguished (the case foj = 0 was amply discussed in example D, and 
will not be taken up again here): 

1. j ( 1 -  b ) -  ( 1 -  a ) =  0, w i t h a > l / 2 :  

( v'l ~imP,(ulv) = 6 u + X] } (66) 
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hence 

This case corresponds to 
occurring in example A. 

2. j ( 1 - b ) - ( 1 - a ) = 0 ,  w i t h a = l / 2 :  

,~olimPs(ulv)~exp[ A1 ( ~  u+ 

- k 

the strong coupling of the two variables, as 

- 2  vJtl (67) 

In this case the coupling of the x variable to the y variable is marginal (see 
example B). Note that the conditional average (u Iv) is still independent of 
the force strength of the noncritical variable: (u  Iv) = (foJXl)v j. 

3. j ( 1 - b ) - ( 1 - a ) > 0 ,  w i t h a = l / 2 :  

( ~klu2 ) 
limPs(u [v)--~exp - -  (68) 
~--~0 Oxx 

In this case, the x variable is decoupled from the y variable (see example 
C). Note that (u~lv)  = 0 for k odd. 

The case j ( 1 -  b ) -  ( 1 -  a ) <  0 need not to be considered since it 
leads to a non-normalizable conditional probability. Only in the case 
j(1 - b) - (1 - a) = 0 do we always have nontrivial results for the condi- 
tional averages. Let us first consider the implications of such a choice. The 
conditional averages are then of the order of O(1). The dominant system- 
atic terms in the Eq. (31) for P(v;t) are thus dearly those for which 
k(l - a) + (I - 1)(1 - b) = (kj + l - 1)(1 - b) is minimal, i.e., the terms for 
which kj + l is minimal. Having identified these dominant systematic 
terms, we note that the noise term should be of the same order in e, in order 
to obtain a nontrivial result for P(v; t); this implies 

b = (kj + l ) / (k j  + l + 1) (69) 

and consequently 

a = (k j+ l - j +  1) / (k j+ l+ 1) (70) 

These values of a and b are in accordance with 1 /2  < a < b < 1 when 

k >  1 or k = l  and l + 1  />j (71) 

(note that k + l / > 2  and j > / 2 ) .  For k > l  or k = l  and l + l > j ,  one 
obtains values 1 /2  < a, b < 1, and the adiabatic elimination corresponds to 
setting x - -  - fo i l~h i ,  in the equation for y. For the limiting case k = 1 
and l + 1 = j  one finds 1 /2  = a < b < 1. Note that although in this case 
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the intrinsic fluctuations of x affect the form of the conditional probability, 
they do not intervene in the adiabatic elimination since we need to 
calculate the conditional moment (u Iv) only. 

Let us now turn to the cases 

k = 1 and l +  1 < j  (72) 

In order to obtain a nontrivial result for P(u Iv; t) at the lowest order in e, 
we take a = 1/2. To obtain a closed equation for the slow variable, we have 
to calculate the correction to the lowest-order result (68) since (u  [v) is zero 
at this order of e. As in example C, we can verify that for a = 1 /2  and 
b > j / j +  1 the equation (33) for P(u,v;t) remains valid to first-order 
correction in e. Hence, the result (36) for the conditional probability 
remains valid to this order and one obtains 

(U IV) = -- f0j Ej(l_b)_ I/2vJ (73) 

Using the above expression in the equation for the slow variable, one finds 
b = (j + l ) / ( j  + l + 1) which is in accordance with 

b > j / ( j  + 1) (indeed l >/ 1) 

As a conclusion, one can give the following recipe for the calculation 
of the asymptotic properties of the fluctuations in the vicinity of a cusp 
bifurcation: 

1. Verify the global stability of the macroscopic steady state. 
2. If the equation for the noncritical variable x does not contain a 

term depending only on y [i.e., f(0, y)  = 0], then one can conclude that, to 
dominant order in E, the two variables are decoupled. The equation for y 
should then contain a term depending only on y and the lowest-power 
term, say, y J, is the dominant one. The appropriate scaling is then a = 1/2 
and b = j / ( j  + 1). 

3. If the equation for x contains terms depending only on y (let yJ be 
the lowest power of these terms), then the adiabatic elimination amounts to 
setting 

f0/ 
x = -  X--~ (74) 

in the equation of y.  The dominant term in the latter equation will then be 
the term x ~v l for which kj + I is minimal. The scaling exponent for the y 
variable is then 

b= k j + l  
kj + 1 + 1 (75) 
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4. The scaling exponent for x depends on the details of the nonlinear- 

a=kj+l-j+l ( i l k >  l o r  
kj+l+l i l k =  l a n d / +  1 > j  

a = 1 / 2  i f k = l a n d l + l  < j  (76) 
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